DustPOL-py
  • Home
  • Docs
  • Tutorials
  • Examples/scripts
  • Applications
  • Web-interface
  • Source code
  • GitHub

On this page

  • 1 DustPOL-py - numerical modelling - v1.6
  • 2 Authors
  • 3 Contributors
  • 4 Features
  • 5 Upnext
  • 6 History:
  • 7 Dependencies
  • 8 Bugs
  • 9 More information, please read
  • 10 Citations

DustPOL-py: a numerical modeling for linear dust polarization

1 DustPOL-py - numerical modelling - v1.6

– This numerical modelling calculates the multi-wavelength polarization degree of absorption and thermal dust emission based on Radiative Torque alignment (RAT-A), Magnetically enhanced RAT (MRAT) and Radiative Torque Disruption (RAT-D).

– The routine will save the output files (wavelength and degree of polarization) for further analysis. A built-in routine for analysis is also provided.

– For a quick look and investigation, please use a web-interface GUI: https://dustpol-py.streamlit.app

– The high-performance-computation techniques are embedded.

2 Authors

Le Ngoc Tram, Hyeseung Lee, and Thiem Hoang

3 Contributors

Pham N. Diep, Nguyen B. Ngoc, Bao Truong, Ngan Lê

4 Features

– Current version is designed to predict the polarization spectrum for starlight and thermal

– diffuse ISM

– molecular clouds and star-forming regions

– isolated dense cores (starless cores)

5 Upnext

– Globules/Pillars

– Protostars

– Protoplanetary disks

6 History:

2024 : Tram added the modulation for starless core and embedded high-performance-computation techniques

2024 : Tram re-structured the DustPOL-py infractructure to python class object (modulation)

2024 : Tram implemented a two-phase model: cold and warm dust layers along the LOS

2023 : Tram optimized and improved the code to work with maximum grain size lower than the disruption size

2022 : Thiem implemented MRAT in align.py to account for iron inclusions

2020 : Tram improved Hyeseung’s code

2019 : Hyeseung modified the Dustpol Code from Thiem, adding RATD (maximum grain size is higher than the disruption size)

7 Dependencies

1- Python 3

2- Numpy

3- Matplotlib

4- Scipy

5- Astropy

6- Joblib for parallelization (installation: https://joblib.readthedocs.io/en/latest/installing.html)

7- Concurrency for parallelization

8 Bugs

Please reach out to us at nle@strw.leidenuniv.nl or nle@mpifr-bonn.mpg.de

9 More information, please read

1- Lee et al. (2020) https://ui.adsabs.harvard.edu/abs/2020ApJ...896...44L

2- Tram et al. (2021) https://ui.adsabs.harvard.edu/abs/2021ApJ...906..115T

3- Tram et al. (2024) https://www.aanda.org/articles/aa/pdf/2024/09/aa50127-24.pdf

10 Citations

If you use this code for your scientific projects, please cite

{Lee}, H., {Hoang}, T., {Le}, N., & {Cho}, J. 2020, , 896, 44,

{Tram}, L.~N., {Hoang}, T., {Lee}, H., {et al.} 2021{}, , 906, 115,

{Tram}, L.~N., {Hoang}, T., {Wiesemeyer}, H., {et al.} 2024, , 689, A290,